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Excited eigenstates and strength functions for isolated systems of interacting particles
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Eigenstates in finite systems such as heavy nuclei and atoms, atomic clusters and quantum dots with few
excited particles are known to be chaotic superposition of shell model basis states. Here we develop a method
for description of this kind of eigenstates~ES! as well as of strength functions~SF!. Using the model ofn
randomly interacting particles distributed overm orbitals we show that the average form of ES and SF in
energy representation is given by the Breit-Wigner formula with the widthG which has a Gaussian dependence
on energy. This explains evolution of ES and SF from the Breit-Wigner form for weak interaction to Gaussian
form for strong interaction.

PACS number~s!: 05.45.2a, 31.25.2v, 31.50.1w, 32.30.2r
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INTRODUCTION

Recently, based on chaotic structure of eigenstates, st
tical approach has been developed in Refs.@1–4# which al-
lows to find distribution of occupation numbers for singl
particles states, expectation values of different operat
transition amplitudes between chaotic states and degree
enhancement of weak interactions. The main quantity in
approach is the form of the distribution of shell model ba
components in chaotic eigenstates. In recent numerical s
ies of the Ce atom@2#, the s-d nuclear shell model@5# and
random two-body interaction model@3,6# it was found that
typical shape of exact eigenstates practically does not dep
on a particular many-body system and has a universal f
which essentially depends on few parameters.

The aim of this paper is to develop a method for t
description of the form of chaotic eigenstates and stren
functions without diagonalization of huge many-bo
Hamiltonian matrices. We follow the standard way acco
ing to which the total Hamiltonian forn Fermi particles dis-
tributed overm single-particles states is written as a sum
two terms

H5H01V5(
s51

m

esas
1as1

1

2 ( Vpqrsap
1aq

1aras . ~1!

Here the ‘‘unperturbed’’ HamiltonianH0 incorporates an ef-
fect of the mean field,es are the energies of single-partic
states calculated in this field,as

1 ,as are creation-annihilation
operators, andV stands for the residual two-body interactio
~the difference between the exact and mean field Ham
nians!. Exact ~‘‘compound’’! eigenstatesu i & of the Hamil-
tonian H can be expressed in terms of simple shell-mo
basis statesuk& ~eigenstates ofH0):

u i &5(
k

Ck
( i )uk&; uk&5ak1

1
•••akn

1 u0&. ~2!

These compound eigenstatesu i & are formed by the residua
interaction V; in complex systems they typically conta
large numberNpc@1 of the so-called principal componen
Ck

( i ) which fluctuate ‘‘randomly’’ as a function of indicesi
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and k. The shape of exact eigenstates is given by
‘‘spreading function’’F ~in what follows, theF function!

Fk
( i )[uCk

( i )u2.F ~Ek ,E( i )!, ~3!

whereEk is the unperturbed energy andE( i ) is the perturbed
one.

EQUATIONS FOR STRENGTH FUNCTION
AND SPREADING WIDTH

For a weak interaction between particles the shape of c
otic eigenstates is known to be well described by the Br
Wigner form @7#. However, with an increase of the intera
tion strength it was numerically observed@2,4# that the
average shape of the eigenstates (F function! changes from
the Breit-Wigner one to that close to the Gaussian with
exponential tails. In order to reduce the distortion effect d
to nonconstant density of states, in what follows we consi
the so-called ‘‘strength function’’Pk(E) which is also
known in literature as ‘‘local spectral density of states,’’

Pk~E![F~Ek ,E!r~E!. ~4!

Note that theF function gives the shapes of both exact eige
states and the strength functions depending on what is fi
the total energyE( i ) or the unperturbed oneEk .

The equations forPk(E) can be obtained on the base
the method presented in Refs.@8,9#. Let us choose some
basis componentuk& and diagonalize the Hamiltonian matri
without this component. Thus, the problem is reduced to
interaction of this component with the exact eigenstatesu i &
described by the matrix elementsVki .

The solution can be written by making use of the avera
over a small energy intervalD ~see details in Ref.@8#!,

Pk~E!5
1

2p

Gk~E!

~Ek1dk2E!21@Gk~E!/2#2
, ~5!

Gk~E!.2puVkiu2r~E!, ~6!
2539 ©2000 The American Physical Society
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dk5(
i

uVkiu2~E2E( i )!

~E2E( i )!21~D/2!2
. ~7!

It is easy to recognize in the energy shiftdk the modified
second order correction to the unperturbed energy level.
the calculation of the shape of the eigenvectoru i & one should
substitute the exact energyE5E( i )5Ei1d i . The difference
d i2dk is negligible if the interaction is not very strong.

One should stress that the summations in the above e
tions are performed over exact states. We would like to
press the result in terms of the basis states only, this all
us to solve the problem without diagonalization of t
Hamiltonian matrixHkp . To do this, we express exact eige
statesu i & in terms of the basis components

uVkiu25(
p

uCp
( i )u2uHkpu21 (

pÞq
Cq

( i )* Cp
( i )HkpHqk ~8!

with Hkp standing for nondiagonal Hamiltonian matrix el
ments. If coefficientsCp,q

( i ) can be treated as random va
ables, the second term vanishes after averaging. Substit
of Eq. ~8! into Eqs.~6!, ~7! gives

Gk~E!52p (
pÞk

uHkpu2Pp~E!

5 (
pÞk

uHkpu2
Gp~E!

~Ep1dp2E!21~Gp~E!/2!2
, ~9!

dk5 (
pÞk

uHkpu2E dE( i )
Pp~E( i )!

E2E~ i !

. (
pÞk

uHkpu2~E2Ep2dp!

~E2Ep2dp!21@Gp~E!/2#2
, ~10!

where the integral is taken as the principal value. Last eq
ity is valid in the approximation of slow variation ofGp(E)
anddp . The equations forGk(E) anddk allow to calculate
the strength function~5! from the unperturbed energy spe
trum and matrix elements of the total HamiltonianH.

CONDITIONS OF EXSISTENCE OF SELF-CONSISTENT
SOLUTION OF EQS. „5…, „9…, „10…

There are four important parameters in this problem:
spreading width of a basis componentG, the effective band
width s of the Hamiltonian matrixHpq , the interval between
the many-body energy levelsD5r21 and the intervaldf

5r f
21 between the final basis statesup& which can be con-

nected with a particular basis componentuk& by the two-
body interaction. The ratioD/df is exponentially small@3#
since all the basis statesup& which differ from uk& by posi-
tion of more than two particles, have zero matrix eleme
Hkp and do not contribute to the Eqs.~9!, ~10!.

First, let us consider Eqs.~9!, ~10! for a strong enough
interaction,G@df . In this case the number of effectivel
large terms in the sums is large,Nf;G/df , and fluctuations
of G are small, dG;G/ANf . Therefore, Eq.~9! can be
written as
or

a-
-
s

ion

l-

e

s

Gk~E!.2puHkpu2r f~Ẽ!, ~11!

whereẼ5E2d. The energy shiftd[^dp& can be neglected
in the case ofG!s @see Eq.~13!#. In order to perform the
summation overp, we assumed thatG(E) and r f(E) vary
slowly within the energy interval of the sizeG. Thus, in
order to have a large number of final statesNf;2pHkp

2 /df
2

and statistical equilibrium~small fluctuations ofG), one
needsHkp@df . In this case chaotic components of exa
eigenfunctions in the unperturbed many-particle basis
godically fill the whole energy shell of the widthG, with
Gaussian fluctuations of the coefficientsCk

( i ) with the vari-
ance given by theF function ~3! ~see also Refs.@8,2#!.

With the decrease of the ratioHkp /df the fluctuations of
G increase and forHkp,df the smooth self-consistent solu
tion of Eqs. ~9! disappears. Indeed, in this caseGp in the
denominator can be neglected and the sum in Eq.~9! is
dominated by one term with a minimal energyE2Ep;df .
Therefore, for a typical basis stateuk. formally one gets
Gk;Gp(Hkp /df)

2!Gp . This contradicts to the equilibrium
condition according to which all components are ‘‘equa
(Gk;Gp).

One should stress that the absence of a smooth solu
for the shape of the eigenstates and the strength func
does not mean that the number of principal component
exact eigenstates is small. However, the distribution of
components is not ergodic: there are many ‘‘holes’’ insi
exact eigenstates which occupy the energy shell of the w
2puHkpu2r f(E) ~see Refs.@11,4#!. In such a situation, very
large ~non-Gaussian! fluctuations ofCk

( i ) are typical.
It is important that ensemble averaging in this problem

not equivalent to the energy average for a specific Ham
tonian matrix. For example, the average over the sing
particle spectrum leads to variation of energy denomina
in Eq. ~9! and can fill the holes in theF function even for
G,df .

TRANSITION FROM THE BREIT-WIGNER TYPE TO
THE GAUSSIAN-LIKE STRENGTH FUNCTION

In principal, the set of equations~9!, ~10! for the shape of
the strength functionPk(E) defined by Eq.~5!, can be solved
numerically having the unperturbed many-body spectr
and matrix elementsHkp of the total Hamiltonian. However
for a relatively large number of particles~practically, forn
>4), one can find an approximate analytical solution of t
problem.

First, we note that the spreading widthG(E) in the ex-
pression~5! for the strength function can be a strong functi
of excitation energyE due to the variation of the density o
the final statesr f(E)5(df)

21 in Eq. ~11!. It is well-known
that at smallE the basis component with one excited partic
has G(E)}E2/d0 where d0 is the interval between single
particle energy levels. For typical case ofn!;(E/d0)1/2 ex-
cited particles the spreading width can be estimated
G(E)}(df)

21;(d0)21(E/d0)3/2 @10#. Below we show that
at higher energies far from the ground state, the energy
pendence ofr f(E) and G(E) can be quite close to the
Gaussian. Note that the Gaussian form typically occurs
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‘‘statistical spectroscopy’’@12# when neglecting the mea
field term in Eq.~1!.

In the model~1! the densitydf is defined by transitions
between those basis states which differ by the position of
or two particles only, therefore,r f(E)5r f

(1)(E)1r f
(2)(E).

Let us estimate the densityr f
(2) determined by the energ

differencevpk
(2) between the statesup& and uk& which differ

by the position of two particles

vpk
(2)5ea

(p)1eb
(p)2eg

(k)2ed
(k)1 (

nÞa,b,g,d
~Van1Vbn

2Vgn2Vdn!1Vab2Vgd . ~12!

Here the summation is taken overn22 occupied orbitals and
Van are the diagonal matrix elements of the residual inter
tion between the particles located at the orbitalsa andn. The
matrix elements of residual interaction are assumed to
random with the zero mean.

For large number of fluctuating terms in the Eq.~12! the
distribution of v is close to the Gaussian form. Strict
speaking, this is correct if the contribution of 4n26 interac-
tion terms to the frequency Eq.~12! is strong. However, even
four single-particle energy terms give the distribution whi
is close to the Gaussian. The same conclusion is reason
also for single-particle transition densityr f

(1) , thus, the gen-
eral expression reads

r f
(1,2)~Ẽ!.K~2ps2!21/2expS 2

~Ẽ2Ek2v̄ !2

2s2 D . ~13!

The normalization parameterK stands for the number of on
or two-particle transitionsK5K15n(m2n) and K5K2
5n(n21)(m2n)(m2n21)/4 correspondingly@3#.

From Eq.~12! the estimate for the average frequency
two-particle transitions reads v (2)52(ep2ek)'2m/
(m2n)( ē2Ek /n), whereek5Ek /n is the average single
particle energy in the basis stateuk& containingn particles,ē
is the single-particle energy averaged over allm orbitals.
Average energy of the empty orbitalsep can be found from
the relationmē5ekn1ep(m2n).

The variance ofr f
(2)(E) for two-particle transitions is

equal to s2
252sp

212sk
21(4n26)V2'2se

21(4n26)V2

wherese
2 is the variance of single-particle spectrum, andV2

is the variance of nondiagonal matrix elements of the tw
body residual interaction. Note that in the case ofn!m for
low-lying states the variance of the occupied orbital energ
sk

2 is small and the variance of empty orbital energies
sp

2;se
2 .

Similarly, the densityr f
(1) is also approximated by Eq

~13!, with K5K1 , v (1)'m/(m2n)( ē2Ek /n), and s1
2

5sp
21sk

212(n21)V2'se
212(n21)V2.

Thus, the widthG(E) is given by the expressionG
52p@(n21)V2r f

(1)1V2r f
(2)#. Since for single-particle tran

sitions the summation inHkp5(nVan→gn is performed over
occupied orbitals, the factorn21 appears in the above rela
tion. Typically, the ratioK2 /@(n21)K1#5(m2n21)/4 is
larger than 1, therefore, the two-particle transitions do
nate. In this case we can neglect the differences inv̄ ands
e

-

e

ble

f

-

s
s

i-

for two-particle and one-particle transitions and combine t
terms into one. As a result, the spreading width is descri
by the simple Gaussian formula

Gk~E!.2p~DE!k
2 1

A2psk
2

expH 2
~Ẽ2Ek2vk!

2

2sk
2 J ,

~14!

whereẼ5E2d. Here (DE)k
2 is the variance of the strengt

function which can be defined through its average va
@3,4#,

~DE!k
25 (

pÞk
Hkp

2 5V2n~n21!~m2n!~31m2n!/4

and vk and sk are close to that for the two-particle trans
tions. The maximum ofr f(E) and G(E) is shifted byuvku
towards the center of the spectrum compared to the m
mum of Breit-Wigner function. This leads to some distortio
of the strength function Eq.~5! and the shape of the eigen
states, which is especially large at the bottom of the sp
trum.

Thus, we have demonstrated that if the interaction is sm
(G!sk), the strength function has the Breit-Wigner sha
with the broad gaussian envelope originating fromGk(E) in
the numerator of Eq.~5!. It is easy to check that this enve
lope is, indeed, needed in order to provide the correct va
(DE)k

2 for the second moment of the strength function~note,
that the Breit-Wigner shape has infinite second mom
which is unphysical!.

FIG. 1. TheF function ~3! in the basis representation. The br
ken line is the result of numerical diagonalization of the Ham
tonian matrix; to reduce the fluctuations, we take the average o
50 matricesHik with different two-body random interaction with
V2'0.1. Two smooth curves correspond to the computation of
~4! with Gk(E) given by Eqs.~9!,~10! and by Eq.~14!; they prac-
tically coincide. The inset shows the dependenceGk(E) itself; full
curve is the expression~14!, the dashed curve is the computatio
from Eqs.~9!, ~10!.
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When the interactionV increases one needs to take in
account one more contribution to the broadening of the sh
of G(E). It is given by the width of the strength functio
Pp(E) in Eq. ~9! @it was neglected in Eq.~11!#. Taking into
account this width we can give an estimatesk

2.s2
21Gp

2.
With further increase of interaction, where the shape
Pp(E) is close to the Gaussian, we havesk

2.s2
21(DE)k

2 .
Direct numerical study of the model~1! with n56 Fermi-

particles andm513 orbitals shows that the above analytic
expressions give quite a good description of the shape o
strength functionPk(E) as well as of the energy dependen
of the spreading width. The unperturbed single-particle sp
trum has been chosen at random, withd051 andes'd0s.
The size of the Hamiltonian matrix isN5Cm

n 51716 and we
specify the unperturbed stateu i 0& with i 05440 ~see Fig. 1!.

In the estimates above we assumed thatG,,s wheres
is the effective energy band width of the Hamiltonian matr
see Eq.~14!. WhenG;s, the ~Gaussian! variation ofG(E)
n
,

.

s.

t.

. E

hy
-
.

pe

f

l
he

c-

,

in the numerator of the strength function in Eq.~5! becomes
as important as the variation of the Breit-Wigner energy
nominator (E2Ek)

21(G/2)2. At this point,G's, the tran-
sition from the Breit-Wigner type to Gaussian-type shape
the eigenstates takes place. We still can use Eqs.~9!, ~10!,
and ~4! in order to calculate~numerically! G(E),Pk(E) and
F(E,Ek), usingG from Eq.~14! with sk

2.s2
21(DE)k

2 as the
zero approximation in the right-hand side of Eqs.~9!, ~10!.
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