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Excited eigenstates and strength functions for isolated systems of interacting particles
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Eigenstates in finite systems such as heavy nuclei and atoms, atomic clusters and quantum dots with few
excited particles are known to be chaotic superposition of shell model basis states. Here we develop a method
for description of this kind of eigenstat€ES) as well as of strength function$F. Using the model oh
randomly interacting particles distributed overorbitals we show that the average form of ES and SF in
energy representation is given by the Breit-Wigner formula with the widivhich has a Gaussian dependence
on energy. This explains evolution of ES and SF from the Breit-Wigner form for weak interaction to Gaussian
form for strong interaction.

PACS numbd(s): 05.45—-a, 31.25-v, 31.50+w, 32.30—r

INTRODUCTION and k. The shape of exact eigenstates is given by the
“spreading function”F (in what follows, theF function)
Recently, based on chaotic structure of eigenstates, statis-
tical approach has been developed in REfs-4] which al- F(ki)
lows to find distribution of occupation numbers for single-
particles states, expectation values of different operator:
transition amplitudes between chaotic states and degree of
enhancement of weak interactions. The main quantity in this
approach is the form of the distribution of shell model basis
components in chaotic eigenstates. In recent numerical stud- EQUATIONS FOR STRENGTH FUNCTION
ies of the Ce atonfi2], the s-d nuclear shell moddl5] and AND SPREADING WIDTH
random two-body interaction modg8,6] it was found that
typical shape of exact eigenstates practically does not deperg)(;zi
on a particular many-body system and has a universal forrw
which essentially depends on few parameters.
The aim of this paper is to develop a method for the

description of the form of chaotic eigenstates and strengt e Breit-Wigner one to that close to the Gaussian with the

{—llmr(:illctmr?i xv Irt: Oti;lit dla\?von?“ﬁ a&otr;] Oft 239% V:/nany-bo%/ exponential tails. In order to reduce the distortion effect due
riamiftonian matrices. Vve Toflo € standard way accords, ,qnconstant density of states, in what follows we consider
ing to which the total Hamiltonian fon Fermi particles dis-

tributed overm single-particles states is written as a sum of /¢ SC-called "strength function”P\(E) which is also
WO terms gie-p known in literature as “local spectral density of states,”

IC|?=F (E(,E™), @)

SwhereE, is the unperturbed energy a&d! is the perturbed

For a weak interaction between particles the shape of cha-
c eigenstates is known to be well described by the Breit-
igner form[7]. However, with an increase of the interac-
tion strength it was numerically observd@,4] that the
verage shape of the eigenstatEsf@nction) changes from

m 1 P(E)=F(Ex.E)p(E). (4)
H=H,+V= >, ealast > > Voarsdp ag ,8s. (1)
st Note that the= function gives the shapes of both exact eigen-
Here the “unperturbed” Hamiltoniak, incorporates an ef- States and the strength functions depending on what is fixed,
fect of the mean fielde are the energies of single-particle the total ener_g;E(') or the unperturbed oni, .
states calculated in this field; ,a; are creation-annihilation __1he equations foPy(E) can be obtained on the base of

operators, an stands for the residual two-body interaction the method presented in Refs,9]. Let us choose some

(the difference between the exact and mean field Hamilto?SiS componerfk) and diagonalize the Hamiltonian matrix

niang. Exact (“compound”) eigenstategi) of the Hamil- without this component. Thus, the problem is reduced to the
tonian H can be expressed in terms of simple shell-modefMteraction of this component with the exact eigenstaites

; ; . described by the matrix elemen; .
basis state eigenstates ofl): i
%) (eig o The solution can be written by making use of the average

. _ over a small energy interval (see details in Ref.8]),
=20 Cllk); [kp=ag - -a|0). 2)

{ Py(E)= o LdE) ®)
These compound eigenstafes are formed by the residual B =5 > 2
interaction V; in complex systems they typically contain T (Bt &= BE)"+[I(B)/2]
large numbeN,>1 of the so-called principal components
C{" which fluctuate “randomly” as a function of indices I'W(E)=27|V,i|?p(E), (6)
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Vil 2(E—ED) TW(E)=2m|H | ?pr(E), (11)
8= . .
=2 (E—EM)2+(A/2)2 "

whereE=E— 8. The energy shif5=(3,) can be neglected
d’p the case of' <o [see Eq.13)]. In order to perform the
summation ovep, we assumed thdf(E) and p¢(E) vary

It is easy to recognize in the energy shift the modified
second order correction to the unperturbed energy level. F
tsr:ﬁ)g,gtlﬁ?elattr;zne?(f;(;eeﬂ]e?gzoé(tir)]i Eligfgiv_eﬁ?éo gﬁf:reonugg slowly within the energy interval .of the sizE. Th%s, izp
8,— &, is negligible if the interaction is not very strong.  °rder to have a large number of final statés-2aH,./d;

One should stress that the summations in the above equ@nd statistical equilibriumismall fluctuations ofl"), one
tions are performed over exact states. We would like to ex1€€dsH,>d;. In this case chaotic components of exact
press the result in terms of the basis states only, this allow@igenfunctions in the unperturbed many-particle basis er-
us to solve the problem without diagonalization of thedodically fill the whole energy shell of E?e width, with
Hamiltonian matrixH, ,. To do this, we express exact eigen- Gaussian fluctuations of the coefﬁmer@é with the vari-

states|i) in terms of the basis components ance given by thé& function (3) (see also Refd8,2]).
With the decrease of the ratld,,/d; the fluctuations of

) 2 ) (i) (i) I" increase and foH,,<d; the smooth self-consistent solu-
Vidl?= 2 [COHipl?+ 2 CP*COHHa 8 tion of Egs. (9) disappears. Indeed, in this cabg in the
P p7a . . .
denominator can be neglected and the sum in @y.is
with H,, standing for nondiagonal Hamiltonian matrix ele- dominated by one term with a minimal energy-E,~d; .
ments. If coefficients<C(). can be treated as random vari- Therefore, for a typical basis stale> formally one gets

ables, the second term vanishes after averaging. Substitutidrc= 1 p(Hkp/d)?<T';. This contradicts to the equilibrium
of Eq. (8) into Egs.(6), (7) gives condition according to which all components are “equal”

(C~T).
Onepshould stress that the absence of a smooth solution
TW(E)=272 |Hy|?Py(E) for the shape of the eigenstates and the strength function
Prk does not mean that the number of principal components in
T',(E) exact eigenstates is small. However, the distribution of the
, (99  components is not ergodic: there are many “holes” inside
(Ept 8= E)*+(T(E)/2)? exact eigenstates which occupy the energy shell of the width
_ 2m|Hyp|?p¢(E) (see Refs[11,4]). In such a situation, very
5=3 |Hkp|2f 4E®D Po(ED) large (non-Gaussianfluctuations ofC{ are typical.
p#k

= H.,.l2
p;kl kp|

E—g® It is important that ensemble averaging in this problem is

not equivalent to the energy average for a specific Hamil-

IHkpl 2(E—Ep—8p) tonian matrix. For example, the average over the single-

= & (E—E,— 6,)2+[T (E)/2]2' (10 partlcle spectrum Ie_ads to variation of energy denominators
p"p p in Eqg. (9) and can fill the holes in th& function even for

where the integral is taken as the principal value. Last equaE<df :
ity is valid in the approximation of slow variation &f,(E)

and é,. The equations fof' (E) and &, allow to calculate TRANSITION FROM THE BREIT-WIGNER TYPE TO

the strength functiori5) from the unperturbed energy spec- THE GAUSSIAN-LIKE STRENGTH EUNCTION
trum and matrix elements of the total Hamiltoniln

In principal, the set of equation{9), (10) for the shape of
CONDITIONS OF EXSISTENCE OF SELF-CONSISTENT the strength functiof(E) defined by Eq(5), can be solved
SOLUTION OF EQS. (5), (9), (10) numerically having the unperturbed many-body spectrum
. o and matrix elementsl,, of the total Hamiltonian. However,
There are four important parameters in this problem: theor a relatively large number of particlépractically, forn
spreading width of a basis compondntthe effective band =4) one can find an approximate analytical solution of the
width o of the Hamiltonian matri o, the interval between problem.
the many-body energy leveB=p~~ and the intervalds First, we note that the spreading widiE) in the ex-
=p; * between the final basis statg® which can be con- pression(5) for the strength function can be a strong function
nected with a particular basis componek} by the two-  of excitation energyE due to the variation of the density of
body interaction. The rati®/d; is exponentially smal[3] the final stateg(E)=(d;) ! in Eqg. (11). It is well-known
since all the basis stat¢p) which differ from |k) by posi-  that at smalE the basis component with one excited particle
tion of more than two particles, have zero matrix elementshasT'(E)=E?/d, whered, is the interval between single-
Hy, and do not contribute to the Eq&), (10). particle energy levels. For typical caserdf~ (E/dg)? ex-
First, let us consider Eqg9), (10) for a strong enough cited particles the spreading width can be estimated as
interaction,'>d;. In this case the number of effectively T'(E)e(d)~*~(do) ~*(E/dg)%? [10]. Below we show that
large terms in the sums is largd;~1I'/d;, and fluctuations at higher energies far from the ground state, the energy de-
of I' are small, ST ~T/\N;. Therefore, Eq.(9) can be pendence ofp¢(E) and I'(E) can be quite close to the
written as Gaussian. Note that the Gaussian form typically occurs in
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“statistical spectroscopy’[12] when neglecting the mean for two-particle and one-particle transitions and combine two
field term in Eq.(2). terms into one. As a result, the spreading width is described
In the model(1) the densityd; is defined by transitions by the simple Gaussian formula
between those basis states which differ by the position of one o
or two particles only, thereforgy(E) = p$™(E) + p{?)(E). , 1 (E—Ex—wy)?
Let us estimate the densip}?) determined by the energy I'W(E)=2m(AE)i Wex T oz |
differencew(}) between the statdp) and |k) which differ k K (14)
by the position of two particles

whereE=E— 6. Here (AE)? is the variance of the strength
0D=eP+eP—l—elr > (V,,+Vy, function which can be defined through its average value
Via"g"y’(s [3,4]7

_VyV_V5V)+Vaﬁ_Vy($' (12)

Here the summation is taken over 2 occupied orbitals and
V,, are the diagonal matrix elements of the residual interac-
tion between the particles located at the orbitaBndr. The  and w, and o, are close to that for the two-particle transi-

matrix elements of residual interaction are assumed to bgyns The maximum ob((E) andT(E) is shifted bY|w_k|

random with the zero mean. , towards the center of the spectrum compared to the maxi-
_ For large number of fluctuating terms in the E&2) the  ym of Breit-Wigner function. This leads to some distortion

distribution of w is close to the Gaussian form. Strictly 4f the strength function E¢5) and the shape of the eigen-

speaking, this is correct if the contribution ofi4 6 interac-  gtates, which is especially large at the bottom of the spec-
tion terms to the frequency E€L2) is strong. However, even ym.

four single-particle energy terms give the distribution which  Thy5 e have demonstrated that if the interaction is small
is close to the Gaussian. The same conclusion is reasonat{lﬁ<ak)’ the strength function has the Breit-Wigner shape
also for single-particle transition densipf"”, thus, the gen- it the broad gaussian envelope originating frBg¢E) in

eral expression reads the numerator of Eq(5). It is easy to check that this enve-
= E e lope gs indeed, needed in order to provide the correct value
p%l*z)(E):K(ZmTZ)l’Zex;{ _( K—w) ) (13) (AE){ for the second moment of the strength functiaonte,

(AE)Z= 2k HZ,=V2n(n—1)(m—n)(3+m—n)/4
p#

252 that the Breit-Wigner shape has infinite second moment
which is unphysical

The normalization paramet&r stands for the number of one

or two-particle transitionsK=K;=n(m—n) and K=K, 0.003 —+——"F+—F—+——+—"F+—+—F+——+—++—

=n(n—1)(m—n)(m—n—1)/4 correspondingly3].

From Eq.(12) the estimate for the average frequency of
two-particle  transitions  reads o®)=2(e,— €)~2m/
(m—n)(e—Ey/n), wheree,=E,/n is the average single-
particle energy in the basis stdte containingn particles,e 0.002
is the single-particle energy averaged over rallorbitals.

Average energy of the empty orbitadg can be found from
the relationme= e,n+ e,(Mm—n).

The variance ofp{?(E) for two-particle transitions is
equal to o5=20%+20;+(4n—6)V?~202+ (4n—6)V? 0.001
whereaﬁ is the variance of single-particle spectrum, arfd
is the variance of nondiagonal matrix elements of the two-
body residual interaction. Note that in the casenefm for
low-lying states the variance of the occupied orbital energies
crﬁ is small and the variance of empty orbital energies is

Fy

210 0 10 20 30
E

or~o?. 0 200 400 600 800 1000 1200 1400 1600 1800
Similarly, the densityp!") is also approximated by Eq. Kk

(13, with K=K;, o@~m/(m—n)(e—E,/n), and o>

- 0,2)+ o2+2(n—1)V?~a?+2(n—1)V2. FIG. 1. TheF function (3) in the basis representation. The bro-

ken line is the result of numerical diagonalization of the Hamil-

_ _ 2 (1) 4 \/2,(2) . . ] . _tonian matrix; to reduce the fluctuations, we take the average over
2l (n=1)V7p; "+ V7 p¢”]. Since for single-particle tran 50 matricesH;, with different two-body random interaction with

Sltlons_ the su_mmatlon 'HKPZEVV“’H Yy |s_ performed over V?~0.1. Two smooth curves correspond to the computation of Eq.
o_ccup|ed.orb|tals, the facturr—l appears in the above (ela— (4) with T'\(E) given by Eqs(9),(10) and by Eq.(14); they prac-
tion. Typically, the ratioK, /[ (n— 1)K1]_= (m— n—__l)/4 IS tically coincide. The inset shows the dependehigeE) itself; full
larger than 1, therefore, the two-particle transitions domi-ypnse is the expressiofid), the dashed curve is the computation
nate. In this case we can neglect the differences and o from Egs.(9), (10).

Thus, the widthI'(E) is given by the expressiol’
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When the interactiolV increases one needs to take intoin the numerator of the strength function in Ef) becomes
account one more contribution to the broadening of the shapas important as the variation of the Breit-Wigner energy de-
of I'(E). It is given by the width of the strength function nominator €—E,)?+ (I'/2)?. At this point,I"~ ¢, the tran-

Pp(E) in Eq. (9) [it was neglected in Eq11)]. Taking into  sition from the Breit-Wigner type to Gaussian-type shape of
account this width we can give an est|mat§~az+l“,2) the eigenstates takes place. We still can use E3)s(10),
Wlth further increase of interaction, where the shape ofaind (4) in order to calculaténumerlcally F(E) Pk(E) and

P,(E) is close to the Gaussian, we haa'§~oz+(AE) . F(E,Ey), usingl from Eq.(14) with o= o5+ (AE); as the

Direct numerical study of the modél) with n=6 Fermi-  Z€ro approximation in the right-hand side of E(®, (10).
particles andn=13 orbitals shows that the above analytical
expressions give quite a good description of the shape of the
strength functiorP(E) as well as of the energy dependence v .V.F. is grateful to ICTP(Triest, Princeton University,
of the spreading width. The unperturbed single-particle specand NEC Research Institute for hospitality. V.V.F. acknowl-
trum has been chosen at random, wit=1 andes~dS.  edges the support from Australian Research Council, and
The size of the Hamiltonian matrix M=CJ;=1716 and we F.M.I. acknowledges the support from the CONACyT Grant
specify the unperturbed stalig) with iy= 440 (see Fig. 1 No. 26163-E(Mexico). Both authors are very thankful to

In the estimates above we assumed fhat<o whereo  Professor V. Zelevinsky for valuable comments and kind
is the effective energy band width of the Hamiltonian matrix, hospitality during the stay in MSU Cyclotron laboratory
see Eq(14). WhenI'~ ¢, the (Gaussiapvariation ofI'(E) when this work was completed.
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